
01/03/2002 Status of the DAQ for the beam test 1

Status of the DAQ design
and implementation

for the beam test

G. Alimonti, G. Chiodini, S. Magni,
D. Menasce, L. Uplegger

01/03/2002 Status of the DAQ for the beam test 2

Our aim
� We need to be able to read-out events from detectors placed either

on a beam or on a test bench

� We intend to make use of the PCI standard boards developed by the
group of Sergio Zimmerman (ESE Feynman)

� A conceptual schematics of the architecture is the following

The
DAQ
PC

The
DAQ
PC

DetectorDetector Mezzanine-cardMezzanine-card PCI cardPCI card

DetectorDetector Mezzanine-cardMezzanine-card PCI cardPCI card

DetectorDetector Mezzanine-cardMezzanine-card PCI cardPCI card

PCI extender

Read-out &
monitor
processes

Read-out &
monitor
processes

Mass storageMass storage

01/03/2002 Status of the DAQ for the beam test 3

� A PCI card contains, schematically, three major components:

The PCI card

� The FPGA controls the logic of this board
and can be programmed

� Our aim is to provide the software
components that allow a read out of these
memories to the host DAQ PC.

FPGAFPGA

Memory
bank 0

Memory
bank 1

DetectorDetector ComputerComputer

� This task has two distinct technological
aspects:
- FPGA programming (low level language)
- read-out of the memory banks and

synchronization with the host PC (high
level language, C++)

01/03/2002 Status of the DAQ for the beam test 4

The logic of the PCI board
� When a memory bank in the PCI board is full, the FPGA swaps

to the other one and raises an interrupt that is catched by an external
process (an Interrupt Handler, IH) to notify the computer that
data are ready to be fetched and transfered to an external storage

� Since we will have several PCI boards lodged in a PCI extender,
each one getting data from one or more detectors, we need to
design an overall architecture to synchronize this transfer activity
and allow for a later stage event-building.

� We will take data in an asynchronous mode: each time a pixel has
data above threshold, it sends them to the PCI memory bank where
they are stored along with row/column and time-stamp information.

And event is thus defined as: all hits labeled by the same time-stamp

01/03/2002 Status of the DAQ for the beam test 5

The read-out philosophy
� We would like to preserve the ability of getting events also in

absence of a trigger: we therefore need to provide a mechanism to
restore an event by assembling it�s components, marked by the
same time-stamp, and we would like to do this in the most simple
way possibile (least impact on hardware and software requirements)

� We devised three possibile approaches to this problem (and already
developed and tested one of these alternatives):
1. Each PCI board is read-out as soon as data are available,

independently from one-another. In this case building an event is a
non-trivial feat (we must define clear boundaries in time whithin
which to look for an event element). We disfavor this approach

2. We synchronize, by two possible mechanisms, the swapping of
memory banks, making thus events somewhat contiguous in the
output data stream, and easier to build at a later stage.

01/03/2002 Status of the DAQ for the beam test 6

The basic mechanism
� The basic solution we would like to adopt is the one that makes

the event-builder the easiest to write, since this is, in our opinion,
the approach that provides the most elegant way of controlling the
flux of the data from the PCI boards to the host computer.

� I will show in a cartoon the basic mechanism of read-out of a single
PCI board (this is easy), but I will only mention the approach we
have taken in developing the overall read-out when it comes to
synchronize many boards togheter.

01/03/2002 Status of the DAQ for the beam test 7

Read-out
process

Read-out
process

Components (0)
� Basic mechanism of operation of a PCI board and the read-out:

Bank0 Bank1

FPGAFPGA

0

Interrupt handlerInterrupt handler

Reset interruptReset interrupt

Shared
memory

Disk stagerDisk stager

Consumer
Process A
Consumer
Process A

Consumer
Process B
Consumer
Process B

01/03/2002 Status of the DAQ for the beam test 8

Components (1)
� Basic mechanism of operation of a PCI board and the read-out:

Bank0

FPGAFPGA

Time
0

Interrupt handlerInterrupt handler

Bank1
Read-out
process

Read-out
process

Shared
memory

Reset interruptReset interrupt
Disk stagerDisk stager

Consumer
Process A
Consumer
Process A

Consumer
Process B
Consumer
Process B

01/03/2002 Status of the DAQ for the beam test 9

Components (2)
� Basic mechanism of operation of the PCI card and the read-out:

Bank0

FPGAFPGA

Time
0

Interrupt handlerInterrupt handler

Bank1
Read-out
process

Read-out
process

Shared
memory

Reset interruptReset interrupt
Disk stagerDisk stager

Consumer
Process A
Consumer
Process A

Consumer
Process B
Consumer
Process B

01/03/2002 Status of the DAQ for the beam test 10

Components (3)
� Basic mechanism of operation of the PCI card and the read-out:

Bank0

FPGAFPGA

Time
0

Interrupt handlerInterrupt handler

Bank1
Read-out
process

Read-out
process

Shared
memory

Reset interruptReset interrupt
Disk stagerDisk stager

Consumer
Process A
Consumer
Process A

Consumer
Process B
Consumer
Process B

01/03/2002 Status of the DAQ for the beam test 11

Components (4)
� Basic mechanism of operation of the PCI card and the read-out:

Bank0

FPGAFPGA

Time
0

Interrupt handlerInterrupt handler

Bank1
Read-out
process

Read-out
process

Shared
memory

Reset interruptReset interrupt
Disk stagerDisk stager

Consumer
Process A
Consumer
Process A

Consumer
Process B
Consumer
Process B

01/03/2002 Status of the DAQ for the beam test 12

Components (5)
� Basic mechanism of operation of the PCI card and the read-out:

Bank0

FPGAFPGA

Time
0

Interrupt handlerInterrupt handler

Bank1
Read-out
process

Read-out
process

Shared
memory

Reset interruptReset interrupt
Disk stagerDisk stager

Consumer
Process A
Consumer
Process A

Consumer
Process B
Consumer
Process B

01/03/2002 Status of the DAQ for the beam test 13

Components (6)
� Basic mechanism of operation of the PCI card and the read-out:

Bank0

FPGAFPGA

Time
0

Interrupt handlerInterrupt handler

Bank1
Read-out
process

Read-out
process

Shared
memory

Reset interruptReset interrupt
Disk stagerDisk stager

Consumer
Process A
Consumer
Process A

Consumer
Process B
Consumer
Process B

01/03/2002 Status of the DAQ for the beam test 14

Components (7)
� Basic mechanism of operation of the PCI card and the read-out:

Bank0

FPGAFPGA

Time
0

Interrupt handlerInterrupt handler

Bank1
Read-out
process

Read-out
process

Shared
memory

Reset interruptReset interrupt
Disk stagerDisk stager

Consumer
Process A
Consumer
Process A

Consumer
Process B
Consumer
Process B

01/03/2002 Status of the DAQ for the beam test 15

Components (8)
� Basic mechanism of operation of the PCI card and the read-out:

Bank0

FPGAFPGA

Time
0

Interrupt handlerInterrupt handler

Bank1
Read-out
process

Read-out
process

Shared
memory

Reset interruptReset interrupt
Disk stagerDisk stager

Consumer
Process A
Consumer
Process A

Consumer
Process B
Consumer
Process B

01/03/2002 Status of the DAQ for the beam test 16

Components (9)
� Basic mechanism of operation of the PCI card and the read-out:

Bank0

FPGAFPGA

Time
0

Interrupt handlerInterrupt handler

Bank1
Read-out
process

Read-out
process

Shared
memory

Reset interruptReset interrupt
Disk stagerDisk stager

Consumer
Process A
Consumer
Process A

Consumer
Process B
Consumer
Process B

01/03/2002 Status of the DAQ for the beam test 17

Components (10)
� Basic mechanism of operation of the PCI card and the read-out:

Bank0

FPGAFPGA

Time
0

Interrupt handlerInterrupt handler

Bank1
Read-out
process

Read-out
process

Shared
memory

Reset interruptReset interrupt
Disk stagerDisk stager

Consumer
Process A
Consumer
Process A

Consumer
Process B
Consumer
Process B

01/03/2002 Status of the DAQ for the beam test 18

Components (11)
� Basic mechanism of operation of the PCI card and the read-out:

Bank0

FPGAFPGA

Time
0

Interrupt handlerInterrupt handler

Bank1
Read-out
process

Read-out
process

Shared
memory

Reset interruptReset interrupt
Disk stagerDisk stager

Consumer
Process A
Consumer
Process A

Consumer
Process B
Consumer
Process B

01/03/2002 Status of the DAQ for the beam test 19

Components (12)
� Basic mechanism of operation of the PCI card and the read-out:

Bank0

FPGAFPGA

Time
0

Interrupt handlerInterrupt handler

Bank1
Read-out
process

Read-out
process

Shared
memory

Reset interruptReset interrupt
Disk stagerDisk stager

Consumer
Process A
Consumer
Process A

Consumer
Process B
Consumer
Process B

01/03/2002 Status of the DAQ for the beam test 20

Components (13)
� Basic mechanism of operation of the PCI card and the read-out:

Bank0

FPGAFPGA

Time
0

Interrupt handlerInterrupt handler

Bank1
Read-out
process

Read-out
process

Shared
memory

Reset interruptReset interrupt
Disk stagerDisk stager

Consumer
Process A
Consumer
Process A

Consumer
Process B
Consumer
Process B

01/03/2002 Status of the DAQ for the beam test 21

Components (14)
� Basic mechanism of operation of the PCI card and the read-out:

Bank0

FPGAFPGA

Time
0

Interrupt handlerInterrupt handler

Bank1
Read-out
process

Read-out
process

Shared
memory

Reset interruptReset interrupt
Disk stagerDisk stager

Consumer
Process A
Consumer
Process A

Consumer
Process B
Consumer
Process B

01/03/2002 Status of the DAQ for the beam test 22

Components (15)
� Basic mechanism of operation of the PCI card and the read-out:

Bank0

FPGAFPGA

Time
0

Interrupt handlerInterrupt handler

Bank1
Read-out
process

Read-out
process

Shared
memory

Reset interruptReset interrupt
Disk stagerDisk stager

Consumer
Process A
Consumer
Process A

Consumer
Process B
Consumer
Process B

01/03/2002 Status of the DAQ for the beam test 23

More than one PCI
Problem is, though, that we have more than one PCI board to be
read-out: if we read them out independently in time, data related to one
event may end up in far away places in the shared memory buffer on
the host computer, making the event building a non-trivial task.

The solution we have envisaged and developed is to synchronize the
swapping of the memory banks to the first one that gets filled up.
Once a bank is full, all banks are forced to swap, no matter what their
content status, and the read out can start on them (while the other banks
continue to receive data from the detector in a continuous flux).

In this way the shared memory acts as a balancing buffer to compensate
for unexpected rate fluctations: if the read-out is synchronized this way,
hits with same time-stamp end up, at most, in two different swapping
cycles, making the event builder a rather trivial implementation of a
sorting algorithm (with boundaries)

01/03/2002 Status of the DAQ for the beam test 24

A simple sketch
� If each PCI board is read-out as soon as one
of its banks is full, hits with same time stamp
can end-up anywhere in the read-out shared
memory.

Interrupt
handler A
Interrupt
handler A

Interrupt
handler B
Interrupt
handler B

Interrupt
handler C
Interrupt
handler C

Interrupt
handler n
Interrupt
handler n

0 1
Banks

AC A B

� If board B has few data to send per event, on
average, it will be read-out relatively rarely,
so hits pertaining to events already written
down earlier will be spaced far away in this
memory (actually anywhere)

We consider this approach unappealing

01/03/2002 Status of the DAQ for the beam test 25

The alternative
� If , on the other hand we synchronize the
swapping (the clock governing this swapping
can be set by the board with the first memory
reaching the full status), events with same
time-stamp will end up not too far away in
the shared memory. Pieces of one event will
actually be at most in two adjacent buffers
corresponding to two consecutive swap cycles

Interrupt
handler A
Interrupt
handler A

Interrupt
handler B
Interrupt
handler B

Interrupt
handler C
Interrupt
handler C

Interrupt
handler n
Interrupt
handler n

0 1
Banks

A B ... n

BUFi

A B ... n

BUFi+1

01/03/2002 Status of the DAQ for the beam test 26

Problems identified and solved
� This synchronized cyclic swapping needs a strategy to be correctly

implemented. Either the first board reaching the full status forces
the others to swap (upon appropriate checks that it can do so, in
order to avoid conflicting orders that can enact unwanted multiple
swaps), or they swap togheter in unison.

� The latter option requires an additional hardware component to be
placed on the board (actually a cable), connecting all interrupt lines
togheter. We strongly favor this approach, and already discussed
with the ESE group wheater this can be accomplished shortly.

� In the first case a complex synchronization among boards must be
setup (each board must be somehow knowledgeable about each
other�s read-out and swapping status). We already tried this solution
and found it working satisfactorily.

01/03/2002 Status of the DAQ for the beam test 27

What has already been
accomplished

The architecture mentioned above poses several problems (each board
must be knowledgeable about each other�s status in order to force a
synchronous memory swap, then there is the possibility of time-glitches
between swap commands to take into account and other factors), but we
think we have found a correct solution for all these problems.

� The first component we developed has been an abstract layer to the
underlying PCI device driver (our code is written in C++).
This allows us to swap to other device drivers, besides the Jungo
Driver, eventually skipping license fees problems (we could even
write our own light-weight driver, we think we know how to do that)

Let�s see what has already been built:

01/03/2002 Status of the DAQ for the beam test 28

FPGA programming
� The second major component has been the micro-programming of

the ALTERA FPGA.
Key issues here are:

2. ability to generate an interrupt upon a memory full condition

3. Possibility to generate specific patterns to feed the memory, thus
allowing for debugging tests of the system (no need for an actual
detector)

Code generated by the Quartus software (the FPGA firmware)
can also be uploaded to the PCI board we have in Milano, thus
allowing tests and code development to be carried out in parallel

1. Swap of the two memory banks when a full condition is reached

3. I/O activity and synchronization between banks and detector

01/03/2002 Status of the DAQ for the beam test 29

The Interrupt Handler
� When an interrupt is generated, a thread, spawned by the
read-out overall process, listens for it and issues the command
to swap all other memory banks eventually starting the read-out.
This component is rather complex, since it must perform a whole
list of checks before, eventually, becoming the master-swapper:

1. only one board at any given time can be allowed to perform this
operation, in order to avoid unwanted multiple swaps)

2. care must be taken to avoid commanding a board to swap just
after it swapped on it�s own because its memory got filled.
(the FPGA has been programmed to reject a swap if its read-out
pointer has not been reset, and this happens only when ALL
memories have been flushed to the overall shared memory)

01/03/2002 Status of the DAQ for the beam test 30

The Shared Memory
� The heart of the system is a piece of code that creates a shared

memory (or attaches to it if it�s already present). This shared memory
has been implemented as a circular buffer, with all the utilities needed
to inspect it�s content and synchronize the fill-in and read-out to
disk.

� The obvious advantage of such an architecture is that there is a
complete logical decoupling between the activity of the PCI board
and the activity of the host computer. The timing is NOT dictated
by the read-out process but by the detector itself.

� Another advantage is that a process to check the internal consistency
of the data flow is just a consumer of this shared memory, but a
completely separate and detached process (this component is still
missing, though)

01/03/2002 Status of the DAQ for the beam test 31

The Message Reporter
� In order for all the processes, acting as the DAQ, to synchronize their
activity, a light-weight package has been developed to act as as a
Message Reporter (based on the IPC protocol).
More refined packages could also be used, but at this stage we would
like to keep the total amount of code to a minimum for better control.

01/03/2002 Status of the DAQ for the beam test 32

The Code Management
� Since our activity is already split between Milano and Fermilab, we
adopted CVS as a code management system since the beginning.
Periodic tags and releases are produced on AFS space, making the
code available to users in real time.

01/03/2002 Status of the DAQ for the beam test 33

Preliminary benchmarks (1)
� We have carried out preliminary tests to check the sustainable data

flow we can expect. We still have to understand several issues, but
we can summarize here the key facts:

� The PLX 9030 PCI Controller on the PTA card we are using does
NOT allow for DMA transfer. It could in principle be used in
burst-mode, but this feature is not available on the INTEL architecture.
We are thus forced to run in single word transfer mode, but this seems
more than adequate for our beam test needs.

� We have tried three different setups:

1. A PCI card directly connected to a 1.3 GHz PC motherboard
2. A PCI card directly connected to a 1.8 GHz PC motherboard
3. A PCI card connected to a 1.8 GHz PC motherboard by means of

the PCI extender bus

01/03/2002 Status of the DAQ for the beam test 34

Preliminary benchmarks (2)
� We observe the following data transfer rate from the PCI board to the

shared memory in the three cases mentioned above:

2 Mb/sec-
Connection to
motherboard by
PCI extender

4 Mb/sec6 Mb/secDirect connection
to motherboard

1.8 GHz1.3 GHz

� We still do not fully understand these numbers, but studied are under
way

01/03/2002 Status of the DAQ for the beam test 35

To do
� In this overall architecture several components are still missing:

1. A sophisticated error handling, encompassing both errors generated
by the hardware (suppression of extremely noisy channels, dead
PCI boards, faulty memories etc...) and by run time conditions
(such as excessively high rate due to beam conditions and such)

2. Detailed benchmark tests to determine the upper limit of the
sustainable data rate. We already have made measurements and
determined bottlenecks but a systematic work has still to be done.

3. Try a version of the swapping mechanism where the PCI boards
have been modified to accomodate a hardware line to synchronize
the interrupt generation.

4. Other more mundane components, such as run control, activity
monitor and logger, GUI, data consistency checker and flow monitor

